
THE MAIN APPLICATION
SECURITY TECHNOLOGIES
TO ADOPT IN 2021

Application Layer Continues to
Be Most Attacked

2020 was a difficult year. COVID-19 and
the resulting lockdowns and quarantines
sent tens of millions of global workers
home. As a result of this dramatic
increase in remote work, the number of
ransomware, phishing attacks, and
accidental breaches by employees
working at home rose sharply. Despite
the increases in these exploits, however,
the application layer continues to be the
most attacked.

Why is the application layer the most
vulnerable? Applications constitute the
largest attack surface of all the layers in
the enterprise stack. In addition, they are
the hardest to defend because they are
the most accessible and most exposed to
the outside world. Finally, the amount of
data that passes through the application
layer makes it highly attractive to
malicious actors.

This white paper presents three trending
application security technologies that are
important to implement in the next year
to keep organizations’ application security
posture up to date and resistant to
modern threats. It also highlights best
practices when implementing each
technology so organizations can plan their
application security strategy.

One outcome of the 2020 global
pandemic is that organizations have
been forced to reassess their security
strategies and infrastructure. In today’s
incredibly diverse software ecosystem,
the challenge becomes protecting all
your endpoints when they can be
anywhere, including on devices you
don’t control. Think anything in the
cloud. As digital transformation
accelerates, organizations are moving
more and more systems to the cloud,
which, again, requires a reimagining of
the security paradigm.

If you look at the application security
market, you can see its growth reflects
the heightened importance of application
security. According to Forrester, the
global application security market was
valued at approximately USD 4.5 billion
in 2020, but is expected to grow to more
than USD 7.1 billion by 2023.

Traditional approaches to security are
being challenged, but you don’t need to be
left exposed. More than ever, security
tools are focusing on both guiding
development so developers create more
secure code and giving advice on how to
remediate vulnerabilities. In essence, what
we’re seeing is security shifting both left
and right so that the entire development
process is fully merged with security.

In This White Paper

Top Three Application Security
Technologies to Adopt in 2021

Container
Security

Software
Composition Analysis

API
Security

These three technologies were chosen because, although they represent maturing security market segments, they are not yet fully mature.
Organizations would be wise in investing in container, open source, and API security because these technologies represent popular attack
surfaces. In addition, all three technologies benefit from both shifting security left – placing more responsibility in developers’ hands – and
shifting security right – securing the application throughout the software development life cycle (SDLC) including in production environments.

Container Security
Container technology has been widely embraced because it makes building and deploying cloud native applications simpler than ever. Containers
offer a logical packaging mechanism in which applications are decoupled from the operating system on which they run, which allows containers to
be deployed easily and consistently. Containers are lightweight, fast, and can run virtually anywhere. The rise of containers has created a new
application development methodology, one that enables microservices architectures and continuous development and delivery.

Kernel

Base Image

Image

Image

Containerwritable

add Apache

add emacs

Debian

bootfs

Why You Need Container Security
Despite the promise of less overhead in terms of system resources
and greater portability and efficiency, containers present unique
security challenges. Microservices increase data traffic as well as
network and access control complexity. Monitoring containers,
particularly during runtime, can be extremely difficult. A single
compromised container can all too easily lead to other containers
being compromised. Containers are built from a base image, and
knowing whether to trust the source of a public image can be difficult.

Further complicating security, containers are built in layers and
therefore need multi-level security. Not only does the application need
to be thoroughly tested before the base image is built, but you need to
secure container deployment environments and infrastructure,
including hosts, runtimes, registries, and orchestration platforms.

Finally, integrating containers with enterprise security tools that meet
or exceed existing organizational security policies is not always
straightforward.

In a container environment, defects in the application image are perhaps the biggest security risk, though orchestration, data storage, and
monitoring also present security complexities. In this section, we focus more on the container itself and less on its environment, though both are
important to secure.

Container Security Best Practices

1. Reduce Your Attack Surface by
Keeping Containers Lightweight
Containers were designed to be both lightweight and short-lived to run
more efficiently. When vulnerabilities are found, container images are
usually replaced, not patched or updated, which makes them
inherently more secure. Many developers, however, don’t use them
this way. Too many developers add files to containers instead of
updating the base image.

Once a vulnerability is identified in an image, it is best to remediate the
vulnerability, then deploy new, clean containers. Always remember to
minimize the number of files stored in a container and replace the
containers you use frequently. Using a minimal base image and
reducing the number of container components helps you shrink attack
surfaces and thus prevent security breaches.

2. Use Images Only from Trusted Sources
Containers are built from images that are stored in one or more
repositories, which could belong to a public registry such as
DockerHub, Azure Container Registry, and Amazon Elastic Container
Registry, or to a private registry like Docker Trusted Registry. Simply
because a container image is publicly available does not mean that it is
secure.

3. Never Run as Root
Perhaps this is obvious, but it bears repeating: Always

protect the host by properly configuring your container.
Never run as root – or any other highly privileged account! If
your container is compromised, the host will be exposed.
Operate under the principle of least privileged user.

This should go without saying, but if you don’t know the
provenance of a container image, you shouldn’t be using it.
The container image might be poorly configured and
inadvertently contain security vulnerabilities. Worse yet, the
image may have been created by a malicious actor and
intentionally contain malware that opens a backdoor into
your sensitive data. In either scenario, you’re exposed.

Luckily, there’s an easy way to reduce the threat of attacks:
Use container images from trusted sources only, and sign
images from public registries. If you’re building your own
image, make sure you’re scanning each layer for
vulnerabilities across the container life cycle, using tools like
software composition analysis for open source components,
then store your image in a private registry.

Software composition analysis is the segment of the application security testing market that deals with the management of open source
software components. SCA solutions provide a complete inventory of an organization’s open source components, manage open source
licenses, and identify and remediate open source security vulnerabilities. They also give organizations the power to set organization-wide
policies to enforce the usage of open source components. SCA solutions often integrate with developer tools throughout the software
development life cycle (SDLC), including IDEs, repositories, package managers, build tools, CI servers, and more.

Software Composition Analysis (SCA)

Why You Need Software Composition
Analysis
Software composition analysis solutions are becoming a baseline
requirement for any organization concerned about application security.
Just look at the math. The application layer continues to be the most
attacked surface, and open source components comprise 60-80% of
organizations’ code base. This adds up to open source components
representing a significant portion of an application’s overall risk. If these
components aren’t being managed, then it follows that an organization’s
code base isn’t being secured.

SCA solutions are more important than ever especially considering the
increasing amount of government regulations like the European Union’s
General Data Protection Regulation (GDPR), the California Privacy Rights
Act (CPRA), and HIPAA. These regulations tightly control consumer
information and privacy, and organizations are assessed fines if consumer
data is breached. By adopting secure coding best practices such as using
an SCA solution that integrates with your IDE, repo, or CI server, you can
prevent security vulnerabilities from entering your code, thus thwarting
potential cyber attacks.

SCA Security Best Practices
As the market matures, best-of-breed SCA solutions will focus more on the prevention and resolution of security vulnerabilities than simply
detecting issues. In 2021, look for SCA solutions that are able to prioritize security vulnerabilities with a high degree of accuracy, incorporate
auto remediation of vulnerabilities, and scale with your enterprise.

1. Prioritization
For years, managing open source risk focused primarily on the
detection of vulnerabilities and license compliance issues. Due to
the overwhelming number of alerts and the problem of alert
fatigue, identifying problems is no longer enough. In the words of
Gartner analyst Neil MacDonald, "Perfect security is impossible.
Zero risk is impossible.” The focus of application security, therefore,
must shift toward curing the most significant defects first. This is
done through the prioritization of vulnerabilities.

Organizations must adopt a mature SCA security model that
includes prioritization on top of detection so developers and
security professionals can focus first on the vulnerabilities that
represent the greatest potential risk. By using a solution that
automatically identifies these most significant security
vulnerabilities, organizations are able to address their highest
priorities first. Developers and security professionals don’t waste
their time and resources sifting through pages of alerts trying to
determine what vulnerabilities are the most important, possibly
leaving highly exploitable vulnerabilities running in a production
system.

2. Auto Remediation
The auto remediation of vulnerabilities is the next logical step after
the prioritization of vulnerabilities. It goes beyond just showing
developers where the vulnerability is located to actually suggesting a
fix and providing data on how likely the fix will impact a build.
Automated remediation workflows can be initiated based on security
vulnerability policies triggered by vulnerability detection,
vulnerability severity, CVSS score, or when a new version is released.
One of the most reliable risk mitigation strategies is to keep your
open source components continuously patched to avoid being
exposed to known vulnerabilities. A mature SCA solution with auto
remediation helps you achieve this.

3. Delivery at Scale
The explosive growth of open source components in commercial
software is due to the speed it brings to the development process. In
the era of DevOps, speed – along with automation and integration –
is king. Traditional application security has not been able to keep up
the same pace as the current cycle of software development and
delivery. So how do you deliver a secure product at scale?

For software composition analysis, this means selecting an
enterprise-grade solution that targets every team in the security
process. In addition to traditional security professionals, you also
need to bring developers, DevOps, legal, compliance, management,
and others into the fray. Security must be integrated throughout the
entire SDLC and done so seamlessly through the tools these teams
are already using. The only way to accelerate secure product at scale
is by distributing security throughout the development process, in a
sense, shifting security both left to development and right through
delivery to cover the entire spectrum of your product’s life cycle.

If everyone now owns security, it’s vital that everyone is seeing the
same snapshot of your current security posture. As security moves
to the forefront, you need a way to measure the progress of your
security posture against industry benchmarks. By default, an
enterprise-grade solution must have robust, real-time reporting
capabilities tailored to each individual team’s specific needs.

You’ve made an investment in security. You want to know how that
investment is performing and what you’re getting out of it using
measurable and actionable insights. Make sure you choose a
solution that can deliver.

The Very Real Problem of Alert Fatigue

What is alert fatigue?
Alert fatigue is when an overwhelming number of alerts desensitizes those responsible for monitoring them. This desensitization leads to
either missed or ignored alerts and results in a delayed response or no response at all.

How does alert fatigue apply to security?
In application security, alert fatigue refers to the overwhelming number of security alerts developers and security professionals receive
on a daily basis. These alerts may be generated at any point in the SDLC from a scan of an application’s codebase pre-build, during QA, or
in production. High rates of false-positive alerts compound the problem.

Security alerts have more than doubled in the past five years, and prioritizing these high alert volumes is a significant challenge. It’s no
surprise that the vast majority of security teams identify alert fatigue as a serious problem.

What can you do to combat alert fatigue?
Take these first steps to prevent alert fatigue:

 Tune your system to reduce the amount of background noise. Look for security solutions that offer zero false positives and give
 you contextual data so that you understand the severity and relevance of alerts.

 Implement solutions that prioritize your security vulnerabilities, so you can concentrate first on the high-severity issues that
 would cause the greatest potential disruption.

 Automate as much of this process as possible so that your security professionals are free to remediate the most important threats.

By 2023, IDC predicts that digitally transformed enterprises will account for 52% of global GDP. Despite the 2020 global pandemic, investment in
direct digital transformation is growing at a healthy compound annual growth rate (CAGR) of 15.5% from 2020 to 2023, reaching a market value of
$6.8 trillion. Automation is powering this digital transformation, and APIs are key to driving automation and scaling productivity.

Think of APIs as the connective tissue linking ecosystems of technologies and organizations. APIs allow businesses to monetize data, form
profitable partnerships, and open pathways of innovation. Using APIs, organizations are able to expand into new ecosystems. Unfortunately,
many still struggle to secure APIs.

Application Programming Interface (API) Security

Why You Need API Security
With opportunity comes risk. Though APIs are key to digital
transformation, they are simultaneously one of the biggest cybersecurity
attack vectors and the most often overlooked. The average enterprise
has approximately 1,000 applications, and this expansion of endpoints
creates new attack surfaces. Robust API security is a necessity.

Unfortunately, API security differs from traditional application security,
and it is hard. Because APIs move so much data, any broken, exposed,
or hacked API can lead to a critical data breach. And API hacking does
not require advanced technical capabilities. Even relatively
inexperienced attackers can use basic tools to discover and exploit API
traffic to perform credential stuffing attacks, exfiltrate databases,
change account values, or conduct denial of service attacks on critical
applications.

API Security Best Practices
API security is still relatively immature. The challenge of API security is that it needs to address client, backend, and network security risks, yet most
of the attention is focused only on networks. When defining your API security strategy for 2021, don’t treat API security as separate from your overall
security plan. Adopt a holistic approach with a focus on authenticating identity and setting rate limits.

SolarWinds Data Breach, 2020

Widely accepted as the work of nation-state hacking group
Cozy Bear, an arm of the Russian intelligence agency SVR,
SolarWinds was the most headline-generating breach of
2020. Possibly the biggest breach of US networks in history,
the attack impacted numerous U.S. government agencies,
business customers, and consulting firms. Though this was
a supply chain attack, SolarWinds Orion API also had an
authentication bypass vulnerability that allowed attackers
to execute API commands. The Orion API has highly
privileged access to all platform components.

1. Adopt a Holistic Approach
API security shouldn’t be its own separate security segment where you
set token-based authentication once and then forget about it. It should
be part of your overall security posture, actively managed and
monitored. As a best practice, you should be building an ecosystem of
security products and platforms that are integrated with each other
and also provide insights across a wide range of platforms.

To achieve this, you need a comprehensive layered approach to
protection across your entire ecosystem, including cloud, multi-cloud,
and hybrid environments. Taking a holistic approach means looking at
API security together with enterprise security and mobile security. You
need an end-to-end approach because you will be attacked on all three
of these fronts. Taking a wide view to securing APIs not only addresses
potential vulnerability issues, but also offers protection for all of the
infrastructure, networks, and data across your organization.

2. Focus on Identity
Hackers frequently impersonate users. As API security becomes more
evolved, identity – representing people in encoded digital forms –
becomes more important. On a basic level, identity involves confirming
information about users, their rights, and their origin. Unfortunately,
it's not uncommon for organizations to adopt HTTP Basic
Authentication, API keys, or token-based authentication, yet ignore

The problem with this type of authentication is that it doesn’t ensure
that the person holding the key is supposed to have it, is authorized
to use it, or even that the key is still valid. If you want to prevent
vulnerabilities, you need a comprehensive plan that emphasizes
identity.

The API Security Model, based on the Richardson Maturity Model,
describes API security in increasing levels of security, complexity, and
efficiency. Level 0 is API keys and basic authentication. Level 1, which
builds on Level 0, uses tokens to establish authentication. Level 2 is
token-based authorization, which builds on previous levels but adds
OAuth, an authorization standard that requires client requests be
authorized by an OAuth server, to establish identity.

Level 3, the most mature API security level, is centralized trust using
claims, usually through OAuth and OpenID Connect. To verify a claim,
the requesting party calls the issuer, who returns data signed with a
private key. The requesting party then sends this to a second party
who replies and verifies the signature with a public key. Claims give
you context and the ability to verify information. Essentially, if you
trust the OAuth Server that issues keys, then you trust the claim being
made.

The bottom line is you need to ensure that users are who they say they
are and not malicious actors looking to penetrate your system.
Focusing on identity and trust is the key to achieving mature API

3. Monitor and Set Rate Limits
Ultimately, one of the best ways to secure your APIs is to watch what users are doing and limit their behaviors. You do this by monitoring APIs, which
surprisingly, not enough organizations do. By monitoring APIs, usually in a production environment, you gain visibility into performance, availability,
and functionality. You’ll be able to identify unusual or suspicious behaviors more easily If you’re looking for them. In addition to helping you identify
malicious behaviors, API monitoring tools give you the added benefit of analyzing and optimizing API performance.

Rate limiting is both a critical part of API security and vital to scalability. If your API is receiving too many calls, it could be the sign of an attack.
Malicious actors try to overwhelm APIs by flooding your system with requests in an attempt to bring it down. You want to make sure that your
authorized users are able to access your API. Rate limits are an effective defense against DoS attacks and overloaded servers.

Centeralized Trust Using Claims

Token-Based Autorization

Token-Based Authentication

API Keys and Basic Authentication

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

API SECURITY MATURITY MODEL

With environments like cloud native, serverless, containerized, microservices, IoT, CaaS, FaaS, and more, software development ecosystems are becoming
increasingly more multilayered and diverse. As a result, the threat landscape is evolving. This, combined with a massive shift to remote work, is forcing
organizations to rethink their security strategy and infrastructure.

We are staring down the precipice, and a new approach to security is necessary. The security requirements for cloud native environments are vastly
different from an on-prem server. How do you protect all your endpoints when so many of them are out of your control? Long gone are the days when a
firewall and antivirus software on your PC are enough.

Keeping diverse ecosystems and the lack of control in mind, several key trends to keep an eye on for 2021 include the following:

What the Future Holds:
Key Takeaways for 2021

These days, the pace of development is so blisteringly fast that if the way security is delivered doesn’t change, we will all be exposed to malicious actors. It’s
no longer sustainable to have security act as a discrete function at the end of development, nor can developers do it all on their own. Security must be a
cross-functional team initiative that spans the entire product life cycle if we’re to keep the enterprise secure.

The frenzy over all things
cloud native will result in
security gaps, challenges,

and misconfigurations.

Exposed APIs will be the
next big attack vector for

enterprises. You may see a
large enterprise API breach

make headlines.

Software composition
analysis solutions will

offer better remediation
advice with confidence

scores based on
crowd-sourced data.

DevOps goals will be
more aligned with
strategic business

outcomes, especially
for risk management

and security.

Security as Code will
become more

common in protecting
applications

throughout the SDLC.

